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Nagata implies analytically unramified
The next important theorem shows that a Nagata local domain is
analytically unramified.

Theorem H. Assume that (R ,m, k) is a local Nagata ring. Then R is
analytically unramified.

Proof. We proceed with the following steps.

Step 1. Reduction to the case that R is integrally closed.

Proof. We use the fact that if A is a semi-local ring with maximal ideals
P1, . . . ,Pc and J = P1 ∩ · · · ∩ Pc , then the J-adic completion of A is the
direct sum of the Pi -adic completions of A.

To see this, note that for each n,

A/Jn ∼= A/Pn
1 ⊕ · · · ⊕ A/Pn

c .

Now use the fact that inverse limits commute with direct sums to
conclude ÂJ = ÂP1 ⊕ · · · ⊕ ÂPc . Note that in this case, ÂJ is reduced if
and only if each ÂPi is reduced.
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Nagata implies analytically unramified, continued

We apply the foregoing to R ′. Since R ′ is finite over R , R has finitely
many maximal ideals and R̂ ′ = R ′ ⊗ R̂ , hence the inclusion
R ⊗ R̂ → R ′ ⊗ R̂ shows that R̂ is contained in the completion of R ′ with
respect to mR ′.

On the other hand,
√
mR ′ =: J is the Jacobson radical of R ′. Thus, the

completions of R ′ with respect to mR ′ and J are the same. The latter is
the direct sum of the completions of R ′ with respect to P1, . . . ,Pc , where
the Pi are the maximal ideals of R ′.

If each R̂ ′Pi is reduced, then R̂ is reduced, which is what we want.

Since each R ′
Pi

is also a Nagata ring and R̂ ′Pi
= R̂ ′

Pi

Pi
, it suffices to show

each R ′
Pi

is analytically unramified. Thus, we may now assume that R is
integrally closed.
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Nagata implies analytically unramified, continued

Step 2. If 0 6= x ∈ R and P ∈ Ass(R̂/xR̂) satisfies R/(P ∩ R) is
analytically unramified, then (R̂)P is a DVR.

Proof. Set P0 := P ∩ R and localize R at P0. We note that
P0 ∈ Ass(R/xR). If not P0, contains a non-zero divisor on R/xR , which
remains a non-zero divisor on the faithfully flat extension (R̂/xR̂)P0 ,
contrary to our assumption on P .

Thus, RP0 is a DVR (by Proposition A) and P0 = yR , for some y ∈ R .
Since R̂ is (still) flat over R , y is a non-zerodivisor in R̂ .

It follows that P ∈ Ass(R̂/yR̂) = Ass(R̂/P0R̂).

On the other hand, R̂/P0R̂ is reduced (by assumption). Thus

(R̂/P)P = (R̂/P0R̂)P = (R̂/yR̂)P .

Therefore, PP is principal, so R̂P is a DVR.
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Nagata implies analytically unramified, continued

Step 3. We prove the theorem by induction on the dimension of R .

Proof. Suppose R has dimension one and take 0 6= x ∈ R . Since R ′ is
finite over R , there exists k ≥ 1 such that xnR ′ ∩ R ⊆ xn−kR , for all
n ≥ k. Thus xnR ⊆ xn−kR , for all n ≥ k. Since xR is m-primary, R is
analytically unramified by Rees’s theorem.

If R has dimension greater than one, then by induction, R/Q is
analytically unramified for all non-zero prime ideals Q ⊆ R . Fix
0 6= x ∈ R , and take P ∈ Ass(R̂/xnR̂). By Steps 1 and 2, R̂P is a DVR.
By Proposition A, xnR̂ is integrally closed, for all n ≥ 1.

Since the nilradical of R̂ is contained in the integral closure of every
ideal, the nilradical of R̂ is contained in xnR̂ for all n.

Thus the nilradical of R̂ is zero, which completes the proof.
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R satisfies N2 implies R[x] satisfies N2

We need one more component, of independent interest, before we can
prove the main result of this section. For this result, we will use the
following fact about polynomial rings, whose proof we leave as an
exercise. Let A ⊆ B be commutative rings and f (x) ∈ B[x ].

Then f (x) is integral over A[x ] if and only if each coefficient of f (x) is
integral over A. It follows that if A is an integrally closed integral
domain, the A[x ] is also integrally closed.

Theorem I. Suppose R satisfies N2. Then the polynomial ring R [x ] also
satisfies N2.

Proof. Let K denote the quotient field of R and suppose L is a finite
extension of K(x), the quotient field of R [x ]. Let S denote the integral
closure of R [x ] in L.

Clearly, R ′[x ] ⊆ S. If S is a finite R ′[x ]-module, then since R ′[x ] is a
finite R [x ]-module (R ′ is finite over R), S will be a finite R [x ]-module.

Thus, we may replace R by R ′ and assume that R is integrally closed.
Then R [x ] is also integrally closed.
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R satisfies N2 implies R[x] satisfies N2, continued

If R has characteristic zero, the proof is complete, by Theorem F.

Suppose R has characteristic p > 0, i.e., Zp ⊆ R .

We claim there exists a finite extension K ′ of K , an exponent q = pe , for
some e, and γ in the algebraic closure of L such that L ⊆ K ′(x

1
q , γ) and

γ is separable over K ′(x
1
q ).

Suppose the claim holds. Let R0 be the integral closure of R in K ′. Then
R0[x ] is the integral closure of R [x ] in K ′(x). Since R0 is finite over R ,
R0[x ] is finite over R [x ].

If the integral closure of R0[x ] in K ′(x
1
q , γ) is finite over R0[x ], it is finite

over R [x ]. Thus, we may replace K ′ by K and R0 by R and assume
K = K ′.
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R satisfies N2 implies R[x] satisfies N2, continued

So, let S denote the integral closure of R [x ] in K(x
1
q , γ). Let T denote

the integral closure of R [x ] in K(x
1
q ).

Since R [x
1
q ] is contained in K(x

1
q ), is integral over R [x ], and is integrally

closed (it’s a polynomial ring over R), we have T = R [x
1
q ], which is a

finite R [x ]-module.

On the other hand, by the Remark following Theorem F, the integral
closure of T in K(x

1
q , γ), which is S, is a finite T -module. Thus, S is a

finite R [x ]-module, as required.
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R satisfies N2 implies R[x] satisfies N2, continued

It remains to prove the claim.

For this, we first make an observation.

Let E be a field of characteristic p > 0 and suppose β is separable over
E , with minimal polynomial f (y). If E0 ⊇ E is a field containing the qth
roots of the coefficients of f (y), then β

1
q is separable over E0.

To see this, suppose f (y) = yn + e1yn−1 + · · ·+ en, with each ej ∈ E . If
δ is a root of f (y), then δ

1
q is a root of fq(y) = yn + e

1
q
1 yn−1 + · · ·+ e

1
q
n .

Since f (y) has distinct roots, fq(y) has distinct roots, and hence β
1
q is

separable over E0.
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R satisfies N2 implies R[x] satisfies N2, continued

To prove the claim, we can write K(x) ⊆ F ⊆ L, where F is separable
over K(x) and L is purely inseparable over F . There exists β ∈ F such
that F = K(x , β). Moreover, there exist α1, . . . , αs ∈ L and q = pe such
that αq

i ∈ K(x , β), for all i , and L = K(x , β, α1, . . . , αs). Suppose

f (y) = yn +
cn(x)
dn(x)

yn−1 + · · ·+ cn(x)
dn(x)

is the minimal polynomial of β over K(x). For each 1 ≤ i ≤ s, we have
an equation

αq
i =

a0,i(x)
b0,i(x)

· 1 + · · ·+ an−1,i(x)
bn−1,i(x)

· βn−1,

where the fractions in this equation belong to K(x). Let K ′ be the field
obtained by adjoining the qth roots of the coefficients of all
ai,j(x), bi,j(x), ci(x), di(x) to K . Set γ = β

1
q .

Then L ⊆ K ′(x
1
q , γ) and K ′ is a finite extension of K .

By the observation above, γ is separable over K ′(x
1
q ).
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The main theorem
We are now ready to prove the main result of this section.

Theorem J. Suppose R is a Nagata ring and T is a finitely generated
R-algebra. Then T is a Nagata ring.

Proof. By induction on the number of ring generators of T over R , we
may assume that T = R [x ], for some x ∈ T . Let Q ⊆ T be a prime
ideal. We must show that T/Q satisfies N2.

Set q := Q ∩ R . Then T/Q = R/q[x ], where x denotes the image of x
in T/Q. Since R/q is a Nagata ring, upon changing notation we are
reduced to proving the following statement.

If R is a Nagata ring and T is an integral domain generated as a ring
over R by a single element x , then T satisfies N2.
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The main theorem

Suppose x is algebraic over R . If x is integral over R , then T is a Nagata
ring, by Comment 5 above. Otherwise, there exists a ∈ R such that ax
is integral over R .

Thus the ring A := R [ax ] is a Nagata ring, by Comment 5 above.
Moreover, A and T have the same quotient field and T = A[x ].

Let E be a finite extension of the quotient field of T (and hence A).
Temporarily suspending our ′ convention, let A′ denote the integral
closure of A in E and T ′ denote the integral closure of T in E .

Note that A′ is a finite A-module. Set T0 := A′[x ]. Then T ′ = T ′
0. We

will show that T ′
0 is a finite T0-module.

If so, since A′ is a finite A-module, A′[x ] = T ′
0 is a finite module over

A[x ] = T .

Thus, T ′
0 = T ′ is a finite T -module, which is what we want.
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The main theorem

To see that T ′
0 is a finite T0-module, we use Theorem D. Since Aa = Ta,

A′
a = T ′

a. But A′ ⊆ T0 ⊆ T ′, so (T0)a = T ′
a = (T ′

0)a, and therefore, the
first condition in Theorem D holds for T0.

For the second condition, let Q ⊆ T0 be a maximal ideal (containing a or
not). Set P := Q ∩ A′. Then A′

P is analytically unramified, by Theorem
H.

Thus the integral closure of A′
P [x ] = (T0)P is a finite (T0)P -module.

Since (T0)Q is a further localization, (T ′
0)Q is a finite (T0)Q -module,

which is what we want.

Thus, T ′
0 is finite over T0, which shows that T satisfies N2.

If x is algebraically independent over R , then T = R [x ] satisfies N2 by
Theorem I. Thus, the proof of Theorem J is complete.
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The main theorem

We now easily recover the geometric case.

Corollary K. Let k be a field and R a finitely generated k algebra. Then
R is a Nagata ring. In particular, R satisfies N2.

Proof. The field k is a Nagata ring, so apply our main theorem.
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